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Abstract--Two-phase critical flow modelling methodologtes are bnefly reviewed. When a local knowledge 
of the flow behaviour ts required and the influence of the geometry on the outlet conditions is to be 
modelled, a two-phase variable slip model is necessary This model requires numencal integration through 
a singular saddle point. A simple dispersed flow model is presented and integrated numencally. Predictions 
of this model are compared with data taken on an mr-water flow loop capable of producing high gas 
quahty (5-100%) flows of annular dtspersed character. It is shown that cnucal flow solutions of this model 
have a topological structure quahtatively swmlar to that of compressthle gas flow. However, quantitattve 
deviations are shown, in particular a higher upstream/downstream pressure ratio is necessary to choke 
the flow. Furthermore, critical flow is experimentally shown to depend on the entrained liquid fractton 
at the inlet. 
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1. I N T R O D U C T I O N  

The need for accurate modelling of the dispersion of chemicals released accidentally into the 
atmosphere has renewed the interest in critical flow phenomena. Two major issues are the critical 
flow condition (flowrate limitation) and the phase distribution at the point of release. When 
chemical runaway reaction problems are considered it is generally assumed that a large amount 
of gas is produced in the vessel and that mass transfer during the discharge can be disregarded. 
Annular dispersed flow is a probable flow regime for gas qualities in the range between 1 and 
100%. 

In "classical" critical flowrate models, the interest is mostly limited to global flow par- 
ameters like mass flow rates and pressures. When analysed thoroughly, such models appear to 
be more or less of an empirical nature and place little emphasis on geometrical effects. 
Moreover, they provide no phase distribution information. A description of the phase distri- 
bution at the outlet for annular dispersed flow consists, at the least, of droplet mean diameter 
and velocity, film thickness and film velocity. It is very unlikely that such quantities are 
correctly predicted from inlet conditions only, i.e. without accounting for the whole passage 
through the discharge channel. This can only be done by integrating the set of differential 
equations modelling the flow, from the given inlet conditions to the outlet of the actual 
geometry. This could be called an evolution type model. Critical flow conditions will be 
inherent mathematical properties of this model, related to a singularity in the set of differential 
equations. 

This paper presents parts of an experimental and theoretical study on high-quality critical 
two-phase flows. In particular, it aims for a better description of the outlet flow characteristics. 
In section 2, different approaches to critical flow modelling are compared. Next, a 5-equation 
dispersed flow model is presented. Finally, the two different modelling strategies are discussed in 
the light of an experimental investigation. 
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2. MODELLING OF TWO-PHASE TWO-COMPONENT CRITICAL FLOW: 
STRATEGIES 

In this section the two main methods generally utilized for critical flow calculations will be briefly 
reviewed. A theoretical frame for these calculations was formally established some years ago by 
Bour6 et al. (1976). Kestin and collaborators have also over many years worked on topological 
methods for studying nozzle flows. Recently, Bilicki et al. (1987) provided a detailed analysis of 
the close relationships between the various mathematical singularities of the physical models and 
the critical flow phenomenon which completes the formal framework for treating critical flows. It 
will be shown how the same formal methodology leads either to critical flow rate models or to more 
sophisticated evolution models. Even if the latter are potentially better, the former must not be 
rejected because they provide easy ways to scale and analyse experimental data. Moreover, 
provided they are used correctly, they are user-friendly tools for engineering calculations. However, 
to improve the understanding of critical flow phenomena, evolution modelling seems to be the most 
rational way from which more simplified global models may benefit at a later stage. 

2.1. Methodology 

Critical flow phenomena are usually dealt with within the frame of area-averaged (l-D) models. 
If this restriction is considered, the derivation of a critical flow model consists of four different steps. 
Global models and evolution models differ only in the last step. 

First, a two-phase flow model must be carefully selected. The choice is large and the models may 
range from the simplest homogeneous model (quasi single-phase flow) to a sophisticated multifield 
model. The balance equations must be supplemented by the necessary closure relationships in order 
to produce a consistent model. 

Second, the dependent variables of the problem must be chosen. Normally a set of first-order 
ordinary differential equations (ODEs) results. Most of the time it is a quasi-linear system that 
reads: 

dX 
A -~z = B; [1] 

X is the vector formed by the dependent variables, A is a linear operator that may be a function 
of X, B is a vector function depending on X and z, and z is the abscissa along the flow direction. 
By solving [1] for the derivatives, two equivalent forms are obtained: 

dX, A, 
- -  = -  [ 2 ]  
dz A 

o r  

dX, = A, ] dY 
d( f o = C. 
dz = A d~" -~" [3] 

Here A is the determinant of A, A, is the determinant of the matrix obtained by replacing the ith 
column of A by B, ( is a dummy parameter, Y is the vector obtained by adding one component 
(z) to X and C is the vector formed by all the determinants. 

Third, in order to be critical the solution of the flow model, in a duct with variable cross-sectional 
area, must cross a singular point of [3]. This condition is fulfilled at the location where the main 
determinant and one of the secondary determinants are zero: 

A(X*) = 0 [4a] 

and 

At(X*, z*) = 0, [4b] 

where an asterisk refers to the so-called critical section and A~ is one of the determinants in [3]. 
Moreover, at the singular point Y*, the linearized version of [3] must have two real eigenvalues 
of opposite sign. This is a singularity classified as a saddle  point. 
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In the case of a straight or converging pipe, choking may occur if the solution has a turning 
point at the end of the channel. In this case, it is only accounted for by [4a] and the critical section 
is the outlet section. A detailed discussion of these aspects is provided by Bilicki et al. (1987). 

Finally, [4a, b] must be expressed in terms of the control parameters of the process, such as the 
upstream pressure, the gas and liquid flowrates etc. At this point, two paths are possible: 

• Relate the critical parameters to the upstream conditions by a priori specifying the 
nature of the flow evolution (e.g. isothermal, isentropic gas expansion etc.). This 
leads to global models, the classical analysis where the location of the critical section 
is assumed rather than derived from [4a, b]. 

• Relate the critical parameters to the upstream conditions by solving [1] with 
postulated transfer and closure laws. This yields evolution models. 

Whatever the adopted solution is, [4a, b] result in only one equation relating the variables at 
the inlet of the system. For example, in single-phase flow [4a] means that the velocity of the 
fluid is equal to the local velocity of sound at the critical section and [4b] tells us where this 
section is located. If a 2-fluid 6-equation model is considered, the critical flow relationship reads 
formally: 

f(8, ~G, VL, P, hG, hL)mlet = 0, [5] 

where e is the gas void fraction, v is the velocity, p is the pressure and h is the enthalpy, and where 
G refers to the gas phase and L to the liquid phase. By recombining the variables a new relationship 
is obtained: 

g (M6, ML,  p,  TG, TL, 8)inlet = 0, [6] 

where M is the mass flowrate and T is the temperature. It must be noted tha t f and  g account for 
all the source terms associated with [1] (i.e. heat flux at the walls, wall friction, the geometry and 
fluid properties). 

A correct understanding of [6] is of importance since it provides the list of control parameters 
of an experimental investigation. In single-phase (gas) flow [6] indicates that the critical mass 
flowrate is given when the upstream pressure and temperature are given; whereas in two-phase flow 
it shows that the gas flowrate is imposed when the liquid flowrate, upstream pressure and 
temperature and the liquid distribution are known. This last statement implies that the gas flowrate 
may depend on the phase distribution at the inlet even if all the other parameters remain 
unchanged. This will be shown in section 5. 

2.2. Global models ("classical analysis ") 

This section is not aimed at reviewing critical flowrate correlations. Comprehensive reviews of 
this topic have already been published (e.g. Giot 1981). Nevertheless, a variant of the constant slip 
model (CSM) proposed by Henry (1981) will be detailed here as an illustration of section 2.1, and 
because it will be referred to later on. In the CSM, the ratio of the gas to the liquid velocity is 
assumed to be a constant. The slip ratio is defined by 

k ^ ~G [7] 
~L 

When no phase change during the process is assumed, the mass quality is constant: 

MG 
x ~. MG + ML" [8] 

Moreover, if it is assumed that heat transfer between the two phases is sufficiently high, no 
temperature difference between them will exist: 

TG-- TL. [9] 

It is further assumed that the walls are adiabatic. In this way the 6-equation model, degenerates 
to a 3-equation model ([8] replaces one mass balance, [7] replaces one momentum balance and [9] 



4 H LEMONNIER and S SELMER,,OLSEN 

one total energy balance). By writing the remaining balance equations and keeping only the gas 
velocity, density and pressure as dependent variables, the following set of ODEs is obtained: 

- dp ° I 1 dA ± o ] 
(1 -- x)kv  L + xv G vG dz I A d z  

dvo 1 + x ( k  - 1)vc 1 Zw [10] 
0 (1 -- x)k2vG + xkv L dz A 

~fi l 0 1 dp  ~ % 

- -  ~ f i  - R p ~  p---G p d--z -A ( ~  - R p a )  T 

Here p is the density, v is the specific volume, A is the cross-sectional area of the channel, ~ is 
the pipe perimeter, % is the wall shear stress. From the third row of [10] a process similar to a 
polytropic expansion can be recognized. By assuming PG '~ PL : 

~P [11] no = ~ _ .Rp~ '  

where 

= [xCp + (1 - x ) C ] ,  

l = [ x v ~  "" " ( 1 - x ) +  xk2 
p +(l -xj, vLj6-=xYk 

Cp is the specific heat capacity of the gas at constant pressure and C is the specific liquid heat 
capacity. These expressions are close to those of Henry (1981). They are identical when the quality 
is close to 1, the slip is moderate and Pc '~ PL- 

If  the main determinant is set equal to zero, [4a], we obtain at the critical section: 

G~ = n,pk [12] 
[1 + x ( k  - 1)]xv6 ' 

where G is the mass flux (total mass flowrate divided by the area). For straight and converging 
channels, [12] applies at the outlet. On the basis of single-phase flow it is normally assumed that 
[12] applies at the throat, or slightly after, in a converging diverging duct. However, [4b] used on 
[10] would give the same result. 

In order to obtain a useful critical flow model from [12], it is necessary to express it in terms 
of known quantities (upstream conditions). Unfortunately, a closed form solution of [10] does not 
exist. Simplifications are necessary. If the wall friction is assumed negligible, the momentum 
balance may be integrated. Thus, as Henry, (1981) did, by assuming isentropic adiabatic expansion 
of the gas, p and v6 may be expressed as functions of the upstream conditions: 

(1 - x )kv  L 7 t- rl tn 
^ p xv~ ? --  1 

r /= - -  = [131 
[ ] 2 ( l - x ) k v L  7 Po n¢ (1 --x_.__)kv L ~- 1 + + -  

2 XVG XV~ 7 - 1 

and 

RT0 
v ~  = - -  ( t / ) - " ~ ,  [ 1 4 ]  

P0 

where subscript zero denotes the upstream stagnation conditions and ? is the specific heat ratio. 
It is worth noting that for gas-liquid systems at low pressure, n, in [11] is essentially equal to 

1 except for high gas qualities. This implies that the flow should tend to follow an isothermal 
expansion rather than an adiabatic one, and that it is inconsistent to assume adiabatic (isentropic) 
gas expansion. Henry (1981) is not the only modeller to have done this. This aspect will be 
emphasized in section 5.1. 

Finally [12], [13] and [14] may be written as 

fcsM (G, x, po, To, k) = 0. [15] 
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The slip ratio k is unknown. If a value of 1 is assumed, the CSM becomes an homogeneous 
model (HM). Recommended values of k for high-quality flows may be found ranging from 
1 to 30 (see Fauske 1965; Giot 1981, 1986; Chisholm 1983). In the CSM, Henry (1981) assumed 
k = 3.2. Most of the time, k values are obtained by correlating data of limited generality. 
Consequently, these models must be used for geometries and fluids close to those of the 
experiments. The inaccuracy of these models when they are used beyond these restrictions, is not 
known a priori. 

2.3. Evolution models 

The alternative solution consists of relating the critical parameters to the upstream conditions 
by solving [1]. This method is potentially the most powerful since it can account directly for the 
actual flow conditions (geometry, fluids). In these models the slip between the phase results from 
the solution itself. 

Evolution models require numerical integration. They also need to deal correctly with the 
mathematical singularity of the set of ODEs. All this work may be handled with low-cost personal 
computers. Two contributions deserve attention: 

• Vromman (1988) calculated critical flows in the homogenizer of a two-phase pump. 
The model is valid at low gas quality, and this author assumed bubbly flow. Critical 
flow conditions as well as pressure profiles compared favourably with the exper- 
iments under various conditions: air-water flows at low pressure; fuel-nitrogen 
flows at intermediate pressures (40 bar); and fuel-methane flows where mass 
transfer is likely to be significant. 

• Bilicki et al. (1987, 1988; Bilicki & Kestin 1990) proposed a different treatment of 
the mathematical singularities and succeeded in calculating flashing flows of water. 
They also described the impact of different closure laws on critical flow. The 
implementation of this method has not yet been reported for models yielding more 
than 4 equations. In section 3 Vromman's algorithm will be used with a dispersed 
flow model of 5 equations. 

3. DISPERSED FLOW MODEL 

The reason for using a dispersed flow model is to generate slip between the phases by the action 
of the actual flow conditions and the phases themselves rather than by relying on an external 
correlation. A simple dispersed thermal equilibrium model is presented. This is considered as a first 
step towards a future annular dispersed evolution model. 

In order to handle correctly the mathematical singularity, brief comments will be given on the 
solution topology close to the critical section. Finally, by using this information we will solve the 
model by an iterative forward integration procedure (Vromman 1988). 

3.1. Physical model 

In this section, the balance equations and the closure laws of the model are presented. It is 
assumed that neither phase change, nor wall heat transfer occur and heat thermal equilibrium exists 
between the phases (intensive heat transfer between the phases). Other assumptions are common 
to all standard 1-D models. 

According to this, the model is based on 5 balance equations (TG = TL replaces one energy 
balance). The two mass balances read 

d 
d--z (Aepov°)  = 0 [16] 

and 

d 
d--; [A (1 - e )VL 'L ]  = O. [1~  
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The momentum balance of the mixture reads 

$ 
[AspGv 2 + A(l - e)pLv 2] = --A ~ -- z,,~. [18] 

dz 

The total energy balance of the mixture is given by 

- -  Aepov~ h G +  v---~G + A ( 1 - - e ) p L ~  L h E +  = 0 .  [19] 
dz 2 

In dispersed flow the liquid is supposed to be present as small droplets. If it is assumed that 
all the droplets in a cross-section have the same diameter, the momentum balance on a droplet 
reads 

d*,L 3 CD dp 
PL'VL dz 8 Phi PG(VL -- 'VG)[~'L -- ~>ol dz [20] 

where Re is the droplet radius and Co is the drag coefficient. 
At this point the model needs closure laws for the wall friction, the droplet drag coefficient and 

the droplet radius. As this model is considered as an initial step, the work by Vromman (1988) 
was followed closely. The drag coefficient is given by 

CD = 6.3 Red °3s5, 10 < Red < 1200. [21] 

The droplet Reynolds number (Re d) is based on the physical properties of the continuous gas phase 
and the slip between the phases. This number is defined by 

Red -~ , [ 2 2 ]  
#G 

where/ZG is the gas absolute viscosity. Vromman 0988) treated bubbly flow and used the analysis 
of Berne (1983) to close for the bubble radius. Berne (1983) also reviewed models for droplet sizes. 
He proposed that the maximum droplet size is limited by a turbulent break-up process. The droplet 
size is controlled by a critical Weber number obtained theoretically. The Weber number is evaluated 
by using a typical turbulent velocity scale (friction velocity). The friction velocity is defined by 
analogy with single-phase flow: 

2 ^_f 2 =--,T~' [23] 
~*=2  ~ p 

where p and v are the mixture density and velocity, and f is a friction factor; 

/7 ~ 8PG + (1 - -  8)pL [24] 

and 

p ~ s p G ~  G "q- (1 -- 8)pL'V L . [25] 

The friction factor is calculated from the pipe Reynolds number of the continuous phase with the 
Blasius correlation for smooth pipes: 

f =  0.0791 Re~ -°25 [26] 

and 

PG "OG Dc Rec -" - -  [27] 
#G 

where Dc is the pipe diameter. Finally, by following Berne (1983), the drop radius is given by the 
dimensional equation: 

Rd = ! C3/5 [ - - 1  [28] 
\po} } 42' 
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where Rc is the pipe radius, a is the gas-liquid surface tension coefficient, g is the von Karman 
constant (0.41) and C is a constant given by 

24 
C -- . [29] 

3 PGPL+ 2) 
At first sight, it might seem surprising to advocate a droplet size model based on the friction velocity 
~, rather than on the slip velocity. However, the model assumes conjoint acceleration of the liquid 
and the gas from rest up to the throat and not that the liquid is injected at the throat. This latter 
case would yield a sudden droplet disintegration based on the well-known critical Weber number 
criterion ( W e -  12). 

Kataoka et al. (1983) states that there is very strong experimental evidence that drops in steady 
annular dispersed flow are too small to be generated by sudden exposure to a high velocity gas 
stream. In other words, a Weber number criterion based on the slip velocity (~G -- VL) would give 
far too large droplets. The majority of drops are created at the moment of entrainment and the 
relative velocity between the gas core and the liquid film will determine the droplet size. Kataoka 
et al. (1983) therefore based their droplet size model on the interracial friction. They could have 
used the friction velocity equally as well. Moreover, irrespective of the presence of a liquid film, 
drops or liquid bodies entrained in the core will, due to the turbulent motion, be exposed 
continuously to the wall shear zone. Berne's (1983) analyses were based on the classical works of 
Hinze (1955) and Sevik & Park (1973). Considering their description of turbulent emulsification 
will give a limiting drop size based on the friction velocity. See also, Selmer-Olsen (1991). 

By finally considering [16]-[29], a closed-set of 5 ODEs is formed and it must be integrated 
numerically. Before doing this, some comments must be made on the solution topology. 

3.2. Solution topology 

Once the form [3] of the balance equations is obtained, a solution curve can be found from a 
set of initial (upstream) conditions. There are mainly two families of solution curves of physical 
interest, depending on the choice of initial values. In some cases (as in case A in figure 1) a marching 
solution curve starts at the inlet and reaches the outlet. The sign of the determinant of the matrix 
A, [1], is the same everywhere. The outlet conditions vary continuously with the inlet conditions: 
this is subcritical flow. In other cases, the solution curve returns to the inlet (case C in figure 1). 
This is the so-called "non-physical branch". It represents, in fact, the solution for a nozzle cut 
exactly at the location of the curve elbow and is a turning point of the solution (e.g. satisfying [4a]). 
The two families of curves are separated by the B-BI, B-B2 curve. The bifurcation point (.) is 
a singular critical point of [1] (C = 0 in [3]) and is called a saddle point. Bilicki et al. (1987) 
have shown that the linearized operator describing the solution behaviour at the singular saddle 
point has 2 non-zero real eigenvalues of negative product and 2 associated eigenvectors, whatever 
the order of the matrix A. The solution bifurcates, as shown in figure 1, in directions given by the 
components of the eigenvectors and consequently the slopes are finite at the singular point. The 

p 

A 
B 
C 

(°) 

B1 

B2 
i : 

Z 

Figure 1. Typical pressure profiles in a converging-diverging nozzle: ,, the criucal section; A, subsonic 
curve; C, non-physical branch; B-B~, critical subsomc branch; B-B2, crmcal supersomc branch 
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saddle-point topology is a sufficient condition for choking, however singular points other than 
saddle points may be encountered, as discussed by Bilicki et al. (1987). 

An important aspect of this solution topology is that it does not contain any description of the 
shock. In addition to the mathematical reasons emphasized in Bilicki et aL (1987) (the number of 
boundary conditions must match the order of the system), there are some physical reasons. The 
main physical reason is that the physics of the shock is not contained in [1]. In single-phase 
compressible flow, the existence of strong normal shocks results from longitudinal heat conduction 
and from axial normal viscous stresses (Whitham 1971). In the absence of diffusion in our model, 
only two continuous relaxation free paths are possible downstream of a critical section, and there 
is no way to recover the outlet pressure without further modelling assumptions. However, many 
authors when solving the time-dependent counterpart of [1], either deliberately add (for the sake 
of numerical stability) or have implictly (due to the truncation order of the numerical scheme) 
diffusion in their models (Roache 1976). This effect is welcome in single-phase compressible gas 
flow where it allows the pressure profiles to be relaxed towards the back pressure. However, it is 
more rational to model these effects explicitly. 

Here, the key feature is to recognize the singular nature of the phenomenon. Relaxation has a 
mathematical nature similar to that of a boundary layer. Outside the relaxation zone, the flow is 
described by [1] (external solution), whereas inside the relaxed zone (inner solution) the different 
physical processes involved need to be modelled by adding new dependent variables or by including 
higher order derivative terms with the existing dependent variables. In gas dynamics, the matching 
of the two models is possible and yields the Rankine-Hugoniot conditions (Whitham 1971). 
However, in two-phase flow where the mechanisms of relaxation are not completely understood, 
a reasonable approach consists of carrying out thorough investigations of the solutions of [1]. This 
establishes the necessary basis (external solution) from which further modelling development can 
be undertaken. 

Two conclusions may be drawn from the above discussion: 

(1) 

(2) 

In two-phase flow, strong normal shocks cannot be predicted by simply analysing 
[1]. 
When experimental data are analysed, fitting closure laws (as friction) to obtain 
correct predictions (of pressure, for example) is the wrong procedure: if the flow 
is critical, the supersonic branch of the solution of [1] (B-B2) does not depend 
on the back pressure; whereas the experimental pressure profile depends on the 
outlet conditions in a more or less direct way. This will also be discussed in 
section 5. 

3.3. Solution algorithm 

According to the discussion in section 2.1 there are 3 main dependent variables in a critical flow 
experiment. If it is assumed that the two phases enter a given nozzle with the same temperatures 
and with a given phase distribution, the gas and liquid flowrates and the upstream pressure remain 
the only dependent variables. If the flow is critical, only 2 out of the 3 may be chosen arbitrarily, 
[6]. For the sake of convenience it is assumed in what follows that the flowrates are given and that 
the upstream pressure is unknown and must be guessed. 

The idea developed by Vromman (1988) is to use the topology of the solutions to bracket the 
unknown upstream condition. If a high value of the upstream pressure is chosen, an A-type 
subsonic solution (figure 1) will be produced, whereas for a lower value of the pressure a C-type 
curve may result. By refining successively the estimates of the upstream pressure, it is possible to 
approach as closely as necessary the B-B~ subsonic branch of the solution. 

The major drawback of this algorithm is that it does not provide the B2 branch. However, a very 
important piece of information is gwen: the calculated solution corresponds to the onset of 
criticality, t.e. the upstream pressure below which the flow is critical for given flowrates. This 
information is never provided by a global model, where criticality does not result from the model, 
but is assumed. Experimental examples are given and discussed in section 5. 

Finally, it must be emphasized that the procedure proposed by Bilicki et al. (1987, 1988; Bilicki 
& Kestin 1990) is superior to that of Vromman (1988) in that it calculates the slopes of both 
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branches at the saddle point. However, since using this information with a backward integration 
procedure is not free of technical difficulties for the 5-equation model presented here, its 
implementation will be published elsewhere (Lemonnier et  al. 1991). 

4. T H E  F O S S E G R I M E N  E X P E R I M E N T  

The flow loop (FOSSEGRIMEN) was built in order to provide experimental data for critical 
flow conditions. This is basically an air-water flow system which can be operated with a number 
of different test sections. 

4.1. The flow loop 
A brief description of the loop is given in figure 2. Its main characteristics arc 

Gas: 0-400 kg/h up to 9 bar 
Liquid:  0-1000 kg/h  up  to 15 bar .  

The liquid circulates in a closed loop, whereas the gas flows through an open circuit. 
For the gas side, air is pumped from the ambient atmosphere to a 1 m 3 tank by a 37 kW screw 

compressor. The pressure is kept constant by an automatic regulation valve at the tank inlet. The 

FOSSEGRIMEN 

Uquld  J d e  G M  

EMFM 
OI 
m 

N 

8.T 

TFM 

A I ~ V  

V.P 

LH.8  8.C 

NOMENCLATURE : 

AI:'CV : Autorna~ prmmum 
control valve 

AO8 : AIr condlUonlng Wetun 
20 - 00"0 4.5 kW Dry/all free filtered air 

GT : Gas tank (1 m s) 
LR • Uq.~ ramvo~ w~h h~Jng 

(20 -80"0 )  0.6ma 30kW 
EMFM : E ~ n e t i c  flowmeteM 

0 - .10, 0 -1.0 m3lh 
P • Prmmum gauge 

R : ~ (gas) 0 - 3.S NmS~ 
0 - 20 Nma/h 

80 : ~ oompm~or 87 kw 
0 -  400 Nma/h, 0 -  10 her 

81" : hpemUon tank 
T : Tempemtum gauge 
TFM : T u ~ n e  IIow m e w  O- (if, m31h 
1"8 : T m  ~oUon (ve~k~  downwerdl flow) 
VP V o l u m a ~  pump 0 - 4 0  berat  1 mS/h 
OI : Oemml Injeotlon of Ikluld 
AJ : ~nuW inJmUon of Uquid 

Figure 2. The Fossegrimen loop. 
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test section is fed from this tank and air is metered either through a 65 m3/h turbine flowmeter or 
smaller range rotameters. 

For the liquid side, water is pumped from a collection tank by a volumetric pump. Flow rate 
regulation is achieved by by-passing part of the flow back to the pump. Liquid is metered by 
electromagnetic flowmeters and injected in a mixing section upstream of the nozzle. 

At the outlet of the test section a silencer is installed in order to reduce the noise level. Here 
the liquid and the gas are separated: air is released to the atmosphere and liquid returns back to 
the collection tank. 

The control parameters of the loop are: 

l The upstream pressure. 
l The liquid flowrate. 
l The entrance conditions (liquid and gas repartition). 
l The temperature of the two fluids. 
l The test section geometry. 

4.2. The test section 

The test section is an axisymmetric converging-diverging nozzle with 5 mm throat diameter. The 
transition from conical to cylindrical sections is graduated over a short channel length having a 
circular arc with high curvature. This nozzle is shown in figure 3. It is made of clear plexiglass to 
allow direct visualization of the flow. The liquid may be injected either centrally or at the vicinity 
of the wall as a thin liquid film. This design allows us to study the effects on the critical flowrate 
of the liquid distribution at the inlet of the nozzle. Detailed views of the injection sections are shown 
in figure 4. 

5. EXPERIMENTAL RESULTS AND DISCUSSION 

Experimental results obtained in the 5 mm nozzle are presented here. Next, the effect of upstream 
pressure and the inlet geometry on the mass flowrate is discussed. Finally, typical experimental 
pressure evolutions are presented and compared with the evolution model. 

5.1. Critical Jlowrate data: upstream pressures and inlet geometry efects 

Critical flowrate data obtained with the FOSSEGRIMEN flow loop are shown in figures 5 and 
6 where they are compared with the HM and CSM of section 2.2. The liquid injection in these 

15 38.5 83.5 

25 95 10 

8 10 

Figure 3. The 5 mm convergmg-divergmg nozzle. 
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Figure 4. The two liquid injection devices 

experiments is central (figure 4). The continuous lines represent the model predictions, whereas the 
symbols represent data points. 

Apparently, both the nozzle geometry and the central injection favour a relatively homogeneous 
flow behaviour. Furthermore, note that the higher the pressures, the closer the experiments are to 
the HM. This is an effect of the level of mechanical non-equilibrium. Increasing the pressure, 
increases the gas density and thus the drag force on the droplets, i.e. resulting in a higher rate of 
momentum transfer between the gas and liquid phases. The 8 bar data (the highest pressure in the 
experiments) follow the HM closely, whereas the lower pressure data is well-represented by the 
CSM with a moderate value (k = 1.2) of the slip ratio, as shown in figure 6. Moreover, the slip 
ratio is seen to be a function of the pressure (gas density), as already mentioned by Fauske (1965) 
and Chisholm (1983). 

The effect of annular liquid injection is shown in figures 7 and 8, where the critical flow data 
are compared with the HM and the CSM. Figure 7 shows that the mechanical non-equilibrium 
remains significant even at the highest test pressure (compare also with figure 5): the HM does not 
fit the data satisfactorily; whereas the CSM with a moderate value of slip ratio (k = 1.2 again) 
represents all the data correctly. It seems that the pressure dependency on the slip ratio vanishes. 
This may be an indication of a different acceleration process for purely annular flow at the 
inlet. 

The presented data demonstrate that for a given liquid flowrate, upstream pressure and 
temperature, the gas mass flowrate depends on the fraction of the liquid which is initially entrained 
in the gas flow. Direct observations and high-speed cin6 films show that when the liquid is injected 
centrally, a liquid jet is formed which immediately breaks up and generates small droplets entrained 
in the gas stream. This process produces a high specific interfacial area and the acceleration of the 
liquid is high. On the contrary, when the liquid is injected as a film close to the wall, the entrainment 
process is totally different. In many cases, the film enters the throat of the nozzle and the mixing 
of the two phases takes place farther downstream. The acceleration of the liquid is delayed and 
this gives a higher level of mechanical non-equilibrium. Since a higher gas flowrate is a consequence 
of a higher mechanical non-equilibrium, the annular injection data suggest the presence of a liquid 
film containing more mass than when the central injection is used. If the interracial friction 
is the only mechanism to reduce the slip velocity between the two phases, it may be assumed 



12 

149 kO/h 

H LEMONNIER Md S SELMER-OLSEN 

120 

100, 

CRITICAL FLOM~TE 

Slip model : Homogenous 

Gas expansion : Adiabatic 

Ltqutd In ject ion : Central 

80, 

60. 

40. 

20J 
~7 
\ V  

E) 
Po- 8.0 

Po- 6.0 

200. 400. 600. 800. 1000. 
#] kg/h 

Figure 5. Critical flowrate data. Liquid injected centrally and the HM. Gas flowrate as a function of the 
liquid flowrate for different values of the pressure: I"], 8 bar; A, 6 bar; C), 4 bar; ~7, 2 bar. 

that a shorter throat will show greater differences in the gas flowrate between the two injection 
modes. 

In figure 9 the data are compared with the evolution model (EM) presented in section 3. I. Only 
the data corresponding to central injection of the liquid are kept for the comparison. The highest 
flowrate point for each pressure condition is single-phase flow. Significant discrepancies appear for 
the higher qualities and the highest pressure points (6 and 8 bar) where the HM seemed to represent 
the data correctly (se¢ figure 5). This apparent paradox can be explained by considering the 
inconsistency of the HM mentioned in section 2.2. It was indicated in section 2.2 that due to the 
form of the third equation of [10] the flow was isothermal rather than isentropic. Correct 
accounting for this (by replacing the unjustified isentropic gas expansion) is possible by simply 
replacing ~ by ne in [13]. This yields the corrected constant slip model (CCSM) which has the 
correctzd homogeneous model (CHM) as a special case for a slip ratio of 1. Figure l0 shows that 
the CHM also underpredicts the data in the same qualitative way that the EM does (figure 9). 
However, the EM is quantitatively better. Moreover, the single-phase gas flow data in figures l0 
are overpredicted by the CHM due to its frictionlcss nature. This comparison of the CHM with 
data proves that the slip is still significant for the high-pressure data and that the good prediction 
by the HM in figure 5 was pure chance. Finally, this shows how unwise it could be to rely on a 
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Figure 6. Cnucal flowrate data. Liquid injected centrally and the CSM. Gas flowrate as a function of 
the hquid flowrate for different values of the pressure: t'l, 8 bar; A, 6 bar; O, 4 bar, ~7, 2 bar. 

critical flowrate model with a single adjustable constant: minor inconsistencies may be com- 
pensated for by an appropriate experimental fitting, thus hampering the physical meaning of the 
model. 

By comparing figures 9 and 10 it appears that the EM is better at predicting the low-quality data. 
Sensitivity calculations proved that no admissible changes in the closure laws of the EM (e.g. 
increased droplet sizes) may reconcile the predictions and data. The conclusion being that an 
improved model should account for a liquid film to allow more mechanical non-equilibrium. 
Another indication for this is provided by Azzopardi et al. (1989), who showed that for a 
converging-divering nozzle with a 10 mm throat diameter only 25% of the liquid mass was 
entrained as droplets. The work of Martindale & Smith (1982) also shows the importance of the 
liquid film. Consequently, it is envisaged to improve the present EM by adding to it a description 
of the liquid film. 

5.2. Pressure evolutions 

Figures 11 and 12 show pressure profiles measured in the nozzle in figure 3, the liquid injection 
upstream being central. The liquid flowrates are 93 kg/h in figure 11 and 498 kg/h in figure 12, 
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Figure 7 Crmcal flowrate data Annular hqmd injection and the HM. Gas flowrate as a function of the 
liquid flowrate for different values of the pressure" r'1, 8 bar; A, 6 bar; O, 4 bar; V,  2 bar. 

respectively. The upstream pressure is 6 bar. For constant inlet conditions, the introduction of a 
flow restriction at the outlet permitted a gradual decrease in back pressure down to atmospheric, 
a classical way to produce choked/critical flow. 

The experimental data points in figure 11 resemble the well-known topological behaviour 
of single-phase compressible nozzle flow under similar conditions. In particular, for the lowest 
back pressure values, the pressure profiles seem to gather along a unique curve from which 
relaxation to the outlet pressure is visible. Moreover, a critical section can be identified just 
downstream of the throat for which neither upstream data points nor the gas flowrate are affected 
by a further decrease in the back pressure. It must be noted here that in single-phase flow, due 
to the sparse distribution of the pressure taps, direct observation of normal shocks close to the 
throat end was not possible. However, for a further reduction in back pressure, no evidence of 
sharp recompression was found. It is thought that, in agreement with what is described by 
Summerfield et al. (1954), a compressible flow separation occurs and interferes with the shock 
formation. The test conditions of figure 11 are given in table 1 along with the calculated gas mass 
flowrates. 

The data points in figure 12 show a profile of another character. Even for the lowest outlet 
pressure, a critical section cannot be identified easily inside the diverging part of the nozzle. Test 
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Figure 8. Critical flowrate data. Annular hquid rejection and the CSM. Gas flowrate as a function of the 
liquid flowrate for different values of the pressure: U], 8 bar, /X, 6 bar, C), 4 bar; ~7, 2 bar. 

conditions and calculated values of the gas mass flowratc are given in table 2. Even though the 
pressure profiles do not give any indication of choking, the mass flowrate is barely affected by the 
decrease in back pressure. However, it must be noted that due to the use of class 4 gas rotameters 
for the data in figure 12, eventual variations in the corresponding mass flowrate are beyond the 
measurement accuracy. The general impression from figure 12 is that the topological pattern of 
the pressure profiles seems to be a subcritical nature. 

Table 1 

Gas rate (kg/h) Table 2 

Po.~ Gas rate (kg/h) 
(bar) Exp. Calc. Po.tm 

5.38 37.2 32.9 (bar) Exp. Calc. 

4.64 54. I 49.6 5.54 3.2 2.5 
4.30 58.4 52.0 4.50 10.0 12.6 
3.80 61. I 52.7 3.62 15.4 16.8 
3.10 62.0 52.7 2.44 18.2 18.7 
2.00 62. I 52.7 1.93 19. I 18.9 
1.28 62.4 52.7 1.39 18.5 19. I 
0.81 62.2 52.7 0.93 18.4 18.9 

UMF 18/I--B 
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Figure 9. Critical gas flowrate compared with the EM (liquid injected centrally) for different values of 
the pressure: I-1, 8 bar; A,  6 bar; C), 4 bar; V,  2 bar. 

The continuous profiles in figures 11 and 12 are calculated by the present EM. Where a subcritical 
solution is possible, for the given experimental upstream pressure and liquid flowrate, the gas mass 
flowrate is calculated such that the calculated outlet pressure attains the experimental value. 
Wherever this adjustment is not possible, the critical solution, branch B-B~ in figure 1, was 
obtained. The EM reproduces the topological nature of the pressure profiles given in figures 11 
and 12. A saddle point is present for the lowest liquid flowrate, whereas subcritical flow is calculated 
for all conditions of figure 12 except the lowest back-pressure value. In this case, the calculation 
seems to indicate choking close to the minimum of the pressure profile, i.e. in the middle of the 
diverging section. These data and calculations could be confirmation that choking can occur 
anywhere in a diverging channel section, as stated by Bilicki et aL (1987; Bilicki & Kestin 
1990). 

Another characteristic I~haviour of 1-D models is found in the proposed EM. This model 
obviously overpredicts the pressure recovery in the diffuser. This is not seen directly from figure 
11 due to the calculation technique which forces the calculated upstream and downstream pressures 
to coincide with the data. As a result the largest discrepancies appear in the throat area. It is easily 
imagined that if the pressure was set close to the diffuser inlet, instead of its outlet, the calculated 
outlet pressure would exceed the measured value. 

Next, when the CSM, [10], is integrated numerically, the calculated pressure profiles always 
resemble single-phase gas profiles. The calculated critical section is close to the throat end, the 
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Figure 10. Criucal gas flowrate compared with the corrected HM (liquid injected centrally) for different 
values of the pressure: 1"7, 8 bar; A,  6 bar; O, 4 bar; ~7, 2 bar. 

critical pressure ratio is close to the single-phase value (0.5) and the pressure recovery in the diffuser 
is almost complete since the only loss in momentum is due to friction. Even if a CSM is able to 
estimate the correct value of the mass flowrate, it should be noted that it is unable to reproduce 
the trends discussed above. 

6. CONCLUSIONS 

It has been shown that "classical" critical flowrate models, though user-friendly tools for 
engineering calculations, are unable to predict geometrical effects, the effect of the liquid repartition 
at the inlet and the position of the critical section. In particular, it has been shown that the 
hypothesis for the location of the critical section is not always justified and that the critical pressure 
ratio values of the CSM are sometimes inadequate. To overcome these deficiencies a simplified 
dispersed flow EM has been proposed and integrated numerically. 

Experiments have shown that critical flow phenomena depend on the liquid fraction entrained 
at the inlet. Moreover, it has been shown by progressively decreasing the outlet pressure that low 
gas quality flow might remain subcritical in nature even if the upstream/downstream pressure 
ratio is as high as 6 : 1. This last experimental finding, among others, is reproduced by the present 
EM. 
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Finally, analysis of the data by both classical models and the presented EM has suggested that, 
even if a reasonable level of understanding has now been reached in critical flow modelling strategy, 
some physical effects are not yet accounted for correctly in the proposed EM: 

• A liquid film description ought to be added in future work. 
• The 2-D effects (detachment zones) may be modelled advantageously by a technique 

developed by Azzopardi et al. (1988). 

However, the modelling of the relaxation of the flow to the outlet conditions, due to its probable 
singular nature, still remains an open question. 
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